
Introduction

Substantial fluctuations of liquid density in the area of
critical temperature Tc appear as observable phenomena
visible to naked eye [1]. The facts that liquid phase un-
der critical temperature is divided into solid-like struc-
tures and voids filled up with gas-like molecules (the so
called ‘wanderers’), has been well known for a long
time [2]. Some of the modern structural theories
(so-called mode coupling theory, MCT) describing the
structural phenomena of liquid state at lower tempera-
tures are also based on a similar idea of local density
fluctuation as well [3]. The assumption of heterogeneity
in liquid phase goes back to assumption of semi-crystal-
line phase by Kauzman [4], as well as to the assump-
tions of coexistence of gas liquid semi-structures related
to numerous works of Cohen et al. [5–11].

Model structure

In this study we take also the liquid structure as a me-
chanically divided structure formed by blocks (do-
mains, or clusters) on one side, and the individual
‘semi-evaporated’ units, which are subjected to
non-linear anharmonic motions of high amplitudes,
on the other side. It is assumed that the highly
non-linear oscillators maintain the individual charac-

ter of their motions and are taken, in the present study,
as simple individual units about a monomer size [12].
On the other hand, the blocks are assumed to possess
interconnected microstructure and are composed of
identical elastically bonded particles packed to the
high (density) level reaching the density of van der
Waals liquid phase (Fig. 1).

The blocks are characterized by a module, which
reaches the level of glassy state and keeps the swarm
of particles in one block together. A dynamical equi-
librium exists between the block particles and the
semi-evaporated particles, as well as between the
semi-evaporated particles and the gas phase. The ex-
istence of randomly distributed, random size molecu-
lar clusters in a viscous liquid has been discussed
since 1959 till present days [5–11, 13]. Loosely
packed regions separate these clusters. Here we con-
sider that the inter-clusters regions contain molecules
whose vibrations are strongly anharmonic, giving rise
to non-deterministic vibration movements.

The blocks and their inter-blocks bonding struc-
ture form the main contributing factor responsible for
dynamical parameters, such as the viscosity or bulk
elasticity of liquid sample. The blocks are also re-
sponsible for complex relaxation effects, because the
interconnected linear oscillators forming their struc-
tures interact. On the other hand, the ‘semi-evapo-
rated’ particles acting as the non-linear oscillators are
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responsible for erratic character of Brownian motion
displacements in liquids [14]. The ‘semi-evaporated’
particles are acting against the external pressure and
exercise a ‘push aside’ effect on the individual blocks
in their vicinity. The opening thus created (Fig. 2)
through straightforward amplitude jump, can be di-
rected to any direction in amorphous phase. The
non-linear oscillators of semi-evaporated particles

can perform their oscillations on several different am-
plitudes [15, 16], and their motions carry with them
elements of uncertainty described most cases by the
non-linear, non-deterministic theories [17–25] of
chaos. Because the initial positional coordinates of
such non-linear oscillator for its subsequent position
and momentum cannot be determined in advance, the
differential changes in initial conditions will bring
completely different trajectories. The general rule for
the non-deterministic chaos theories [17–25] is
consequently reflected into the structure of amorp-
hous body in glassy state, which depends on the way
of cooling and will have the irregular character.

For the displacement of block as a whole, the
maximum retardation time will show the level of in-
terconnections inside of block structure, characteris-
tic of a given block size, which changes with tempera-
ture (Fig. 3). It is assumed that the block size, together
with maximum block retardation time τmax, decreases
with increasing temperature. The block disintegrates
as the critical temperature is approached [15, 16]. In
the opposite case, the blocks bind themselves to a
rigid structure as the temperature decreases below Tcr.

The amplitudes of vibration movements
below the critical temperature

Under the critical temperature Tc we consider the fol-
lowing most important marking points, as the charac-
teristic temperatures for amorphous body, regarding
the vibration amplitudes size:

• the boiling point temperature Tb,
• the crossover temperature Tcr,
• the transition temperature of glassy state Tg,
• Vogel’s temperature Tv.

It can be stated: Tc ≥ Tb ≥ Tcr ≥ Tg ≥ Tv (the model
proposed has the following distinct characteristics of
vibration modes at different temperatures or tempera-
ture areas, which should be mentioned and pinpointed
beforehand for the text to be clearer).
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Fig. 1 Schematic model for solid-like structure just above the
Tg temperature, when the first particle starts to act as
non-linear oscillator and causes irregularity in structure
of linear elements. The separation of blocks causes in-
terference with α process, which forms the infinite
structural network

Fig. 2 Sudden amplitude jump of non-linear particle (a), (b) can be performed in any direction (case ‘c’) in the sample space



The bottom part of van der Waals curve on the
liquid side plays the important role for the evaluation
of non-linear amplitude size.

The onset of the spinodal part of van der Waals
curve seems to pose a sensible restrain on the upper
amplitude of vibration motion. This limit, if exceeded
has to lead to vacancy enlargement in which the parti-
cles in vicinity of high-amplitude oscillator have to
take away the vibration energy of particle, by their own
avalanche like displacement. This type of energy with-
drawal from high amplitude vibrating particle can only

be performed successfully by particles in vicinity below
the liquid point Tb, without the destruction of the sample
through the creation of a gas phase in the sample bulk.

The level of bottom of van der Waals curve for iso-
thermal case can be found easily for small volumes by
looking for the intercept of spinodal curve [26] with the
low volume of van der Waals dependence. The intercept
point is at volume fraction of 0.385 of critical volume.
At boiling point Tb, the non-linear movement stops for
some semi-evaporated particles, as the bond of particle
to a ‘strange’ attractor of Lorenz type [23, 24] enlarges
its basin of attraction and is eventually interrupted as the
particle leaves the oscillatory movement for a gas phase.
Between the crossover temperature and the boiling
point, the high amplitudes of vibration are able to me-
chanically perturb the original bonding of blocks to such
a level, that shear module disappears. In contrast to be-
havior of material at this higher temperature zone, be-
low the crossover temperature, the substantial rise in
shear module G contributes (as a new element) to limita-
tion in vacancy enlargement, as the sample is able to
store the elastic energy W connected to shear module
[27], inside of the vacancy space:

W Gr r r= 8 0 1 0
2π ( – ) (1)

The radius r0 represents the radius of a rigid sphere
approximating the particle, and r1 is approximating
the size of radius of the cavity. For example the cavity
of size r1=2r0 formed in solid with modulus G of
about G=1010 N m–2 needs about 125 kJ mol–1 [27],
while in liquids of van der Waals–Eyring’s type, such
level of internal void expansion inside of bulk of liq-
uid sample, leads to Trouton’s rule [2].

The non-zero shear module below the Tcr has
drastic impact on vacancy size and on the sizes of
maximal diffusion jumps, which are depressed or elimi-
nated as the temperature decreases. The presence of
inter-block bonding will bring the shear module to the
non-zero level and the elastic network will be formed.
The fact of different ways of inter-block bonding has
basic influence also on the fragility phenomena’s
[28, 29]. Above the crossover temperature the diffusion
process, is driven mainly by few particles, out of the
block area’s, which are undergoing the amplitudes
switch. Thus the relation formed by product of viscosity,
size of the diffusing particle and diffusion coefficient,
divided by absolute temperature and Boltzmann’s
constant [30, 31] cannot retain its form below Tcr. The
most apparent impact of shear module can be demons-
trated on the temperature dependence of the alpha α and
beta β relaxation processes. (Also this topic will be
treated more closely in the following text). In Tg vicinity
the changes in vibration amplitudes of average vibra-
tions can be also demonstrated by the experimental
measurements of Debye–Waller factor [32].
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Fig. 3 Schematic picture for a liquid-like structure where the
linear elements represented in blocks by Voigt series
are not connected through the elastic network and are
mobile, being restricted in their mobility by balance of
saturation pressure Psat and by the external pressure Pext

only (Fig. 1). The blocks are a source of cooperative
phenomena of sample time response



Earliest experimental justification of the
structural heterogeneity of liquids

X-ray diffraction

The X-ray diffraction studies are the oldest methods
supporting the existence of dual structure in bulk of liq-
uids [33]. These studies have shown that for a liquid,
even above its boiling point, the coordination number
(characterizing the number of particles in the closest vi-
cinity) falls drastically in the area of temperatures be-
tween boiling point and Tc, but the distance characteris-
tic of the first peak of radial distribution g• r of particles
in vicinity hardly changes as the temperature ap-
proaches the critical temperature region. On the other
hand, the experimental proof of compact structure, ex-
pressed through unchanged radial distribution g•(r), im-
plies the existence of voids and cavities filled with
‘semi-evaporated’ particles, to make up for the overall
volume of the sample characterized by average density.

The characteristic of local heterogeneity using the
positron annihilation spectroscopy

The volumes of vacancies are exactly determined and
are reported in numerous papers on positron annihila-
tion spectroscopy PASCA [34–38] (Fig. 4). The ex-
periments of PASCA provide the unusually high co-
efficients of thermal expansion in the vacancy area.
The volumes of vacancies are very sensitive to tem-
perature changes above the glassy transition and to
the external pressure changes in the boiling point
area. In the present study, the vacancies in liquid state
contain the semi-evaporated particles without which
the transition from bulk of sample to gas phase at
boiling point would not be possible. As can be seen
from the data of Fig. 4 the coefficient of thermal ex-
pansion in vacancies areas is about ten to a hundred
times as high as that in the block areas. At tempera-
tures T ≤ Tg (for the amorphous bodies and the whole
piece of sample) the coefficient of thermal expansion
is α1≈1·10–4 K–1. At temperatures T ≥ Tg the coeffi-
cient of thermal expansion is α2=4.1·10–4 K–1. The
PASCA readings at crossover temperature are higher
than αV,1≈4·10–3 K–1. The discontinuity in properties
for liquid structure is apparent. It could be contem-
plated that the liquid contains locally expanding
spots, which bear a responsibility for the high coeffi-
cient of thermal expansion of liquids in general.

Three types of entropy contributions

The entropy contribution connected with the semi-evap-
orated state (Fig. 2), which is created inside the liquid
system in vacancies areas, can potentially be contem-

plated as well [15, 16]. For the temperatures T ≤ Tg the
entropy S main contributions can be explained as:

S k W W≅ +B th conf[ln ln ] (2)

and for T ≥ Tg

S k W W Wth≅ + +B conf semievap[ln ln ln ] (3)
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Fig. 4 a – The stepwise rise of vacancy volume in the vicinity
of Tg=168 K for polybutadiene; the data provided by
Bartoš et al. [19] are gratefully acknowledged, b – The
coefficient of volumetric thermal expansion calculated
from Fig. 4a, for the vacancies, and the data of α ap-
proximately taken from literature [43, 60] quoted for
the sample at glassy state



This type of entropy changes composed of three
distinct contributions, viz. thermal, conformational
and highly non-linear, has been experimentally con-
firmed in recent works of Johari [39, 40]. Because the
vacancies areas, thanks to the reports on PASCA ex-
periments, have well defined size (which is larger
than the van der Waals volume, but smaller than is the
0.385 fraction of critical volume of the particles in-
volved), we can estimate the change in enthalpy con-
nected with the semi-evaporated state. As has been
shown by Hirschfelder et al. [2], the whole amount of
evaporation enthalpy is needed to produce an expan-
sion of cavity to level of twice as high as is the parti-
cle diameter. So to produce a cavity of size about
0.385 of fraction of critical volume, a proportionally
smaller part of evaporation enthalpy ∆Hevap can be
used, as the first estimate for the energy of void cre-
ation. The assumption of the ∆Hsemievap=∆Hevap/n,
where n is about 2–4 or even higher, will be in agree-
ment with the PASCA experiments as well as with the
estimate on viscosity by Eyring et al. [41, 42].

The basic phase space behavior of semi-
evaporated particles – highly non-linear
oscillator

The equation of motion for particle vibrations

The equation of vibration motion for non-linear oscil-
lations of ‘nth ’ particle is:

m
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δ ξ
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ext, n (4)

where the oscillator external force Fext,n(t) is created
through action of many particles in the vicinity, and mn

is the particle mass, comparable in size with dimen-
sions of acoustical unit [12] of about monomer size. Un

is the potential energy characteristic of the potential
valley in which the nth vibration acoustical unit is per-
forming its oscillations. The term ξ=r–r0,n is the devia-
tion from the bottom of local potential valley.

The vibrations of particle take place inside of the
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where in the first approximation the individual pa-
rameters U0n, f n

⊗ , gn, r0,n for the block’s particles are

constant and time-independent and vary smoothly
with temperature only; r0,n is a vector pointing to the
bottom of potential valley of the nth oscillator. The

term U0n stands for the basic level of internal energy,
f n

⊗ , gn are characteristic parameters of local potential

valley, which depend on positions of particles in the
closest vicinity. The equation of motion for particles
in the form of Eq. (4) is the same for block particles as
for the semi-evaporated particles. However, if Eq. (5)
is substituted into Eq. (4), great differences will ap-
pear in the solutions obtained between the individual
cases for gn→0, r0,n(t)=const. (the case of ideal solids)
or for gn≠0 (the case of real solids or liquids) or when
gn(t), f n

⊗ (t), U0n(t) vary with time. The last example

represents the structural changes in solids and the dif-
fusion or flow onset for liquids.

Beside Eq. (4) in variables ξ and t an additional
equation for description of r0,n(t) development in time
(for the bottom well displacements) would be needed.

The mathematical treatment of strong non-linearity
for one oscillator above Tg transition

To find fast solution to Eq. (4) and provide illustrative
examples that can be easily visualized, the second-or-
der differential Eq. (4) is usually turned into two sepa-
rate first-order differential equations. This procedure is
performed in the deterministic chaos theories [17–25]
as well as in studies of ‘organized structures’ or in
studies of non-equilibrium thermodynamics [21, 22].

By choosing the variables A1≡ξ and A2≡dξ/dt we
can rewrite Eq. (4) into (two first order differential
equations) the following forms [15, 16]:

d

d

A

t
A A1

11 1 12 2= +α α (6)

d

d

A
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21 1 22 2
t

= +α α (7)

Equations (6) and (7) can be analyzed further in the
vicinity of vibration stationary point. The system of
Eqs (6) and (7) will have non-zero solution only if

det
–

–

α λ
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2
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where a1=α11+α11, α2=α11α22–α12α21.
The changes from a solid to a liquid state, as well

as the other higher temperature transitions, can be in-
vestigated through the change of parameters a1 and a2

within a certain range as shown in our previous com-
munication [15, 16].

The mathematical reasoning gives the basis to
the existence of vacancies, which stems from the con-
siderations of high non-linearity of Eqs (4–8), sug-
gesting the particle trajectories have a non-determin-
istic character. At solidification process, the end
points of the trajectories in phase space are aiming at
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different spots, which forms the irregular structure of
the glassy state. The scheme for the amplitude devel-
opment for two coordinates ξn, dξn/dt for different
temperatures in phase space is shown in [15, 16].
Following such line of perception, the higher transi-
tions such as the boiling or critical point can be con-
sidered too. The fraction of vacancies can roughly be
estimated through the density changes for the liquid
sample [15]. While only few vacancies exist at lower
temperatures (according to Bueche [43] the ratio of
vacancies to vibrating particles is equal to 1:40 at Tg),
at the critical temperature the amount of vacancies
reaches the level at which the condensed phase disin-
tegrates completely [15, 16] and all oscillating parti-
cles are able to reach the upper vibration amplitude
with addition of very tiny amount of energy.

The linear cooperative phenomena in blocks

As a result of separation of the non-linear effects from
the linear blocks areas, some more than half-century-old
experimental results and mathematical techniques can
successfully be used for the investigation of very topical
time phenomena in liquid–solid transitions (following
the temperature interval between TV and Tcr). The new
physical explanations about certain phenomena, nowa-
days intensively studied [13, 44–56], connected with α
and β processes, about the crossover temperature, and
also about the Kauzman paradox [4] can thus be re-
vealed, as the system changes its structure as it cools
down below the crossover temperature and under Tg, as
the particles generating the voids and associated with
the higher amplitudes of motion disappear.

The limiting values of block time characteristic

For the time dependence limits for the fastest time in-
terval of retardation we use the time interval calcu-
lated from the sound velocity, which for solid blocks
is about 105–106 cm s–1, and from the minimal length
of acoustic waves, which are determined by the mesh
size ∆r0,n

∗ . Thus we get: 1/νmax≅τmin and vsound=
=λminνmax, where λmin ≈ 2∆r0,n

∗ .
Substituting from the estimate of values outlined

above we get νmax≅1013 s–1for the maximum fre-
quency in sample body and for the fastest time of ma-
terial response in block min≈ max

–1=10–13 s. (The esti-
mate on the fastest bottom well displacement based
upon the experiment is quoted by Rossler [47], viz.

min=3·10–13 s.) For the longest time characteristic for
the material we take the characteristic time connected
with permanent displacement in series of elements in-
side of block space and bonded together through elas-
tic force (Eqs (14), (15)).

The estimate on the size of blocks from the shear
viscosity data

Numerous predictions regarding the size of the blocks
are reported in literature by many authors
[13, 50–56]. These predictions are based upon differ-
ent experimental techniques. Focusing the attention
now in a direction not yet used for the block size esti-
mate, it will be tried in this study to provide the block
size approximation, using the techniques of rheology.
The answer is searched for two unknown parameters.
The first represents the number of linear elements in
block at which the blocks start to be interconnected in
shear flow and start to interfere mutually producing a
contribution to the elastic shear module response. A
useful source of data, for the domains (block’s) inter-
actions, is the measurements of shear viscosity data
obtained at zero velocity gradients, which have been
known for about forty years for different structures of
polymer melts with a variety of molecular mass val-
ues [57–59]. These data show one common feature in
the dependence of shear viscosity on the number of
monomer (acoustical [12]) units in chain X sequence.
As is considered, as the first example, that the number
‘X’ is small and remains below a certain limit, X≤Xc,
where Xc≈500–625, and that the polymer melt is char-
acterized by a constant and gradient-independent vis-
cosity. In this particular case the module of shear elas-
ticity is zero, as well as the first normal stress difference
remains zero too. The macromolecules are smaller than
the block size (X≤Xc), and the blocks, if subjected to
shear flow, do not exhibit any mutual interference. A
different level of viscosity, which rises in linear de-
pendence on X, characterizes each polymer at this
particular case. However, at the point when the criti-
cal value Xc is reached in the polymer chains, there
occur changes in the rheological properties. The
block interconnections start to interfere through the
overgrown size of macromolecules. For polymers
with X≥Xc the melt viscosity in dependence on shear
gradient starts to have the non-Newtonian character
as the gradient grows and the first normal stress dif-
ference starts to be an important flow characteristic as
well. This effect is usually explained in connection
with the chain entanglements. The concept of entan-
glements was introduced originally base upon
sketchy pictures [43, 60, 61] and as an evident phe-
nomenon while the nature of couplings [60] was left
as open, with the alternative to cooperative motions
of molecular areas, which is also suited for the low
molecular structures. The later case corresponds more
closely to scheme presented in this study, which is
also supported by findings of Achibat et al. [80, 81],
reporting a relationship between the domains and the
entanglements. The model presented attributes the
property of inter-blocks bonding either to the entan-
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glements (as the individual blocks start to be interwo-
ven by polymer network) or to inflexible bonds of van
der Waals type, or to the bonds of chemical nature.
The inter-block bonding has a consequence in devel-
opment of non-zero shear module. Although different
polymers have different levels of viscosity or chain
flexibility, different molecular mass, or exhibit differ-
ent levels of normal stresses, the numerical value of
Xc for blocks mechanical interference in shear flow
has a universal character. Just quoting [59], for poly-
styrene Xc=600, for poly(vinyl acetate) Xc=600, for
polyisobutylene Xc=500, for polydimethylsiloxane
Xc=625. If the level of critical interconnection is
reached in linear sequence for polymers, the blocks
are inter-bonded and exhibit the shear elasticity repre-
sented by shear modulus or by the first normal stress
difference. Such elasticity created by flexible
macromolecules is entropy related. (This type of in-
terconnection has a ‘long distance character’ rela-
tively to the block size, and one macromolecule can
‘over-bridge’ several blocks too). In contrast to
blocks connected by flexible macromolecules, the
blocks can also be interconnected by inflexible chem-
ical bonds. This is the case for the low molecular mass
substances under the crossover temperature. The
blocks connected by inflexible bonds cannot be
stretched to higher deformations and have to break up

as the temperature is increased above Tcr. The inflexi-
ble blocks interconnection reflects itself into the in-
ternal energy related shear module contribution under
the Tcr. (This is valid for the block’s contacts for the
polymers under Tcr temperature too).

The parameter left to be determined is the cross-
over temperature itself. For these purposes the mea-
surements of the dependence of shear relaxation mod-
ule on temperature in area of main phase transition
can provide this information [62, 63] (Fig. 5). For the
reasons of clarity of explanations in text, some data of
Schultz [59], Alkonis [63] and Tobolsky [62] were
presented to show the idea behind the text more
clearly. The crossover temperature Tcr (Fig. 5) is de-
termined on the basis of the shear elasticity of internal
energy related relaxation module. The value Xc is de-
termined on the basis of the zero gradient viscosity
curves. At this level of internal connection the blocks
start to interfere in flow.

At the temperature Tcr the characteristic domain
size can be estimated and for the lower temperatures
T≤Tcr, the part of force responding to external deforma-
tion has internal energy related component (fINT≠0).
Taking the size of one oscillator unit in interconnection
sequence from the polarizability values [64, 65], for the
interconnection number of Xc=600, the characteristic
size of a domain of about 6 nm3 (for the molecules of
most typical size of pentane) can be obtained. For the
linear dimension of a domain 61/3=1.81 nm can be ob-
tained. This seems to be in good agreement with the
published values [13, 50–56] obtained by different ex-
perimental techniques. As the polarizability of mole-
cules is simple additive properties of individual atomic
polarizabilities, the domain size can be easily estimated,
from the polarizabilities values of individual monomer
unit and from the Xc values, as the Table 1 hints.

The spectra characteristic of the block

For the particles forming the block structures, in addi-
tion to the motion in ξ coordinate, which does not lead
to linear particles diffusive displacements, an addi-
tional motion connected with r0,n displacements can be
superimposed on the movements of particles. Besides
the potential valley deformation the additional degree of
freedom, if added to the particle movements, will bring
by itself the increment in specific heat capacity cp.

For the differentially small changes in bottom
position δr0,n (Eq. 5), the coordinated changes of par-
ticles positions, ...r0,(n–1)…r0,(n+1), r0,(n+2)……r0,(n+k) in
the vicinity of semi-evaporated participle are needed
as the precondition for permanent displacement of the
nth particle.
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Fig. 5 The typical picture of relaxation module behavior of
polymer. The sample is undergoing the temperature and
molecular mass change. (According to Tobolsky [62]
and Alkonis [63].) The elongation relaxation modulus
of polystyrene, for two different molecular masses
Mw =M1≤M2 as a function of temperature. The relax-
ation experiment is performed for a time of 10 s. The
area ‘a’ stands for glassy zone and ‘b’ is the rubber-like
zone [60, 61]
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The f stands for functional dependence and is
taken as an unknown function of time t associated
with material characteristic series of discrete retarda-
tion times. The actual positions of r0,n, r0,(n+1) etc. does
not enter into the mathematical formulation. The indi-
vidual oscillators can be placed consecutively, in the
space of sample, touching each other in form of neck-
lace (Fig. 6). The mathematical formula will involve
the particle consecutive order in chain time response
and also the direction and size of deviations from
equilibrium positions ∆r0,n, ∆r0,(n+1), etc.

In simplistic view of interconnections for one
line of particles connected in the form of an elastic
necklace such as shown in Fig. 6 we get:
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Through extension of Eq. (10) inside of block we get:
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where Fext represents the external force acting on the
particle through the particles localized in its vicinity.
The simplest form of interconnections of elements,
without branching or bridging is considered. The term
Fext can involve the effects of local friction force f 0n
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t
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Fr nδ

δ

∆ 0, expressed sepa-

rately as shown in Eq. (11). The term ′Fext represents
the interaction of non-linear oscillator (the
semi-evaporated particle), acting on the ends of chain
(point ‘0’ in Fig. 6), by which the individual blocks
segments are displaced in time. The non-linear oscil-
lator of semi-evaporated particle acts as the local
stress perturbation source on the necklace of elasti-
cally connected masses. The blocks play the role of
the sidewalls, and from mathematical point of view,
they act as the source of exact time response of mate-
rial. For the case of Fext=0 we get a homogeneous
equation as a source for the calculation of vibration
modes. These modes give the evidence about the ac-
tual distribution of resonance frequencies and time re-
sponses of material. The shifts in ∆r0,n can be consid-
ered in any direction inside of sample.

m
r

t
k r r rn

2
n

e ,n 1 ,n 1 ,n

d

d

∆
∆ ∆ ∆0

2 0 0 02, ( )= + −+ − (12)

278 J. Therm. Anal. Cal., 80, 2005

HLAVÁ�EK et al.

Table 1 Calculated domains size from the polarizabilities of
acoustical units

The type of
polymer

Estimate on
polarizability of

acoustical segment /�3

Domain
size/nm

for Xc=600

polystyrene 11.6 1.90

polyisobutylene 7.2 1.62

polybutadiene 6.4 1.55

polyvinyl
acetate

8.0 1.68

polymethyl
methacrylate

9.8 1.95

SiO2 6.7 1.59

GeO2 7.6 1.65

B2O3 4.4 2.05

As2S3 17.3 2.18

glycerol 8.6 1.72

pentane 10.0 1.81

Fig. 6 A detail of Fig. 1. The individual particles in necklace
are numbered according to their positions separating
them from the non-linear particle stress perturbation
shown schematically above of particle '0'



Equations (10–12) have many classical solutions
for many options of Fext and are solved in connection
with many different topics of engineering or scientific
applications [18, 27, 43]. The typical solution to ho-
mogeneous Eq. (12) of relaxing block consists of se-
ries of resonance frequencies ωn,

ω π
n
2 e

n

=










+








=

4

2 1

1 2 3

2k

m

n

N

n N

sin
( )

, , , .....

(13)

and leads to the time response of blocks characterized
by series of relaxation or retardation times (for creep re-
lated experiments) of interconnected elements [18, 43].

(The solutions of Eqs (11)–(13) are given in Ap-
pendix A and B. Please note also that for

sin
( )

2

2 1

n

N

π
+







 and n N≤

2
the argument of

sin 2
2

22 4

n

N

n

N

π

 


 ≈ const. is valid.)

Solving Eq. (13) means finding the resonance
frequencies ωn, which determine the mechanical char-
acteristics of the block. The block is invariably a lin-
ear system, and the times of block response are given
through simple arithmetic multiplication if constant
local friction is considered.

τ
ω

n
n

Fr

n
2

n

=
f

m
0, (14)

and for the constant frictions and masses of each os-
cillator inside of block f m0 1, / 'n

Fr
n const= = τ , we get:

τ τ
1 2

≅ n

n
(15)

For the sequence of resonance modes in the

sense of Eq. (12) the matrix Ω =














1 2 1

1 2 1

–

–
...... ......etc

of Eq. (12) plays the crucial role in the separations of
retardation times and in the separation of resonant fre-
quencies of ωn. From Eq. (11) for the case of the nth

element we get ω
τ

n
2 e

n

n
Fr

n n

= =k

m

f

m
0, .

Taking the ratio between the elasticity and
friction for each oscillator in block as the same
k fe n

Fr
1
–1const =/ ,0 = τ , Eq. (12) gives very simplified

spectra distribution τn= τ1n
2. It can be seen that the

higher retardation times are formed in blocks spaces
through growing sequence of interconnected ele-
ments and not through variation of local friction or
local elasticity. The friction force f 0,n

Fr or the external
forces F'ext, Fext do not influence the separation of
individual material time responses either.

The individual retardation times covering the
motions inside of blocks, are mutually interdependent
through Eq. (15) (Figs 7, 8). The time for total block
displacement is thus proportional to N 2 while the fric-
tion force for the block movement, which character-
izes the shear viscosity of sample, remains propor-
tional to N only if the total block friction is defined as

f
r

t

N

0

1

n
0,n

i

d

d

∆

=
∑ . It can be assumed that the friction coef-

ficients f0,n of ‘beads’ inside the solid ‘icebergs’ vary
only mildly with temperature changes. However, it is
expected that the number N increase smoothly with
decreasing temperature. At the crossover temperature
the inter-chain branching start to appear. The knots
and bridges between the chains characterizing the
structure, affect the relaxation times in different way
from the viscosity, making the chain sequences
shorter. For example if two necklaces are connected
together, then the viscosity rises by factor of two. The
rise in maximal relaxation time will depend on the
way how the interconnection is made, leaving the
maximum increase only for the head-tail interconnec-
tion type. (The last reports on relaxation time and vis-
cosity measurements [13] state that while the viscos-
ity increases with slope of 3.4 with average molecular
mass M w

3.4, the increase in maximal relaxation time is

less dramatic (M w
3° ) [66].

The ‘alpha’ and ‘beta slow’ processes – the
mechanical shelters for shear elasticity components

The retardation time τ1 is thus the starting point in a
sequence through which the longer retardation time τn

can be created. The longest retardation time τN should
grow with decreasing temperature and reflect the ap-
proximation for the level of interconnections in linear
elements of block size.

The term τN stands for the time necessary for dis-
placement of a block as a whole. The shortest retarda-
tion time will reflect the fastest response of bottom of
potential valley by differentially small displacements
of ∆r0,n. The fastest displacement will involve only
the acoustical units in shortest vicinity of the particle
considered. Because the acoustical units usually con-
tain few atoms and are approximately of monomer
size [12], the shortest relaxation time is expected to
represent connection of about 20–100 atoms and to be
in the vicinity of the so-called βfast relaxation process
[49]. One ‘bead’ in necklace pictured in Fig. 6 will be
involved in the friction force of many molecules
forming the first level of coordinated motion in the
closest neighborhood of the particle displaced. (This
will provide the relaxation time in the vicinity of the
so-called βfast relaxation process, which is reported
[49, 67] to be about 3.0×10–13 s). It can be seen in Figs
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7 and 8 that for the so-called α (line ‘A’) relaxation
process the interconnection level reaches infinity as
soon as the temperature decrease starts to approach
the Tg temperature and the infinite elastic network is
developed. The so-called βslow process (lines
‘B, C, D’) is different because the parameter N for
these processes cannot reach the infinite interconnec-
tion level as the temperature decreases. Searching the
τN at the crossover temperature for 600 elements we
get τN(T =Tcr)= τ1·6002=3.0·10–13·6002≈1.08·10–7 s.
Rossler [49] experimentally confirmed such charac-
teristic time level at the crossover temperature. Below
the Tcr temperature the term τα→∞, which means, that

the sample elasticity is mainly connected to the parti-
cles associated with α process as the elastically
interconnected network covering the space of a whole
sample is formed. On the other hand, the particles
connected with βslow process are apparently anchored
in space differently, being ultimately bound with very
high viscosity coefficient rather than with purely elas-
tic response to external shear deformation. It can be
stated that the βslow processes are connected with the
‘loosely anchored’ or floating parts of a network
structure.

Because the area between the Tcr and Tg is con-
nected with sharp increase in shear modulus, it can be
said that the βslow processes are shear-module-insensi-
tive. Therefore, the βslow processes appear to be local-
ized in sample in different, mechanically sheltered ar-
eas, which certainly transport the shear component of
stress in a way different from what the α process does.
Because the number of interconnected elements form-
ing the βslow process does not reach infinity (which is
the precondition for the formation of elastic solid
phase with the infinite relaxation time), the elastic
solid phase formation seems to be determined by the
α process.

The views presented in this paper are more
closely approaching the description of β process pre-
sented in early theories [71–76] of Eisenberg [77, 78],
Heijboer [74–76] and Bueche [43] which has been
taken as well proofed by experiment and which con-
tradict the recent theories which are involving all par-
ticles of the system participating in the β slow mo-
tions [69]. The theories of plasticizers [79] suggest
also the structural heterogeneity and give example of
materials for which the islands of mobility can be
hardly excluded. (On the other hand, in the case of
glycerol, the βslow process is not present). The other
explanation for the βslow processes is connecting them
with changes in coordinates displacements not di-
rectly connected with external shear deformation (the
perpendicular rotation of two different parts of poly-
mer chains around two perpendicular axes has been
described already by Bueche [43] in his discussion of
substance of α and βslow processes.)

These studies are the subject of our various inter-
disciplinary projects and are the continuation of our
previous and recent interrelated discussions pub-
lished in different sources such as papers [16, 82–83]
or books [84, 85].

Conclusions

The estimate on the size of domain at crossover tem-
perature has been provided based upon the rheologi-
cal data of viscosity at zero gradients.
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Fig. 7 The logarithms of characteristic relaxation times determined
by Rossler [49] for variety of organic and inorganic materi-
als. The graphs are testing the sequence shown in
Eqs (14, 15). Rossler’s relaxation times τ are taken for
the limiting variable interconnection number N. In our
model, τ1=3·10–13 s and τ600=10–7 s according to Rossler
[49] and according to Eq. (15). At T =Tcr we take the N
value equal to 600

Fig. 8 The numbers of linear interconnections N for variable
relative temperatures obtained from Eq. (15). The lim-
ited interconnection level for βslow processes (curves B,
C, D), below Tg are clearly visible



The crossover temperature has been estimated
from the relaxation module data. The crossover tem-
perature is connected to first appearance of internal en-
ergy related shear module.

The irregular structure of amorphous phase has
been explained through the existence of non-deter-
ministic oscillators, which exist in liquid phase. The
disappearance of these particles under the Tg and the
non-predictability of end points of their positions in
phase space coordinates gives rise to the existence of
irregular structure of amorphous phase.

The non-linear oscillators have also an abnormal
coefficient of thermal expansion and the amorphous
liquid is thus structurally different from the amor-
phous solids, which casts some light into the explana-
tions regarding the Kauzman paradox [4]. The
Kauzman paradox is based on extrapolation and does
not take into account the fact, that the liquid is a me-
chanically heterogeneous substance in which the het-
erogeneity is partially removed as the temperature
goes down below Tg, and the highly non-linear oscil-
lators disappear. The liquid phase is structurally dif-
ferent from the solid in mechanical sense, viz. by the
appearance and disappearance of highly mobile, dif-
fusive, non-linear oscillators.

The α and βslow processes seem to have a common
origin in the βfast process. The α process differs from
the βslow process in numbers of interconnected ele-
ments, which increase for the α process to infinity as
the sample solidifies. The βslow process does not pos-
sess this property and apparently is not ‘fully’ contrib-
uting to the shear elasticity level. Being localized in-
side of blocks, the βslow process is insensitive to the
inter-blocks bridging which gives rise to shear module
and as such, the βslow process need not to be present in
some materials, at the point of formation of glassy
state. The characteristic vibration frequencies of linear
domains localized outside the non-linear areas provide
the source for discrete characteristic time spectra. The
experimental data supporting the double character of
vibration and double values for amplitude sizes have
been recently brought forward by Medick et al. [46]
and by previous work of Rossler et al. [68–70].

Appendix A: Differential displacements of
particles in block ruled by wave equation

The solution of Eqs (10, 11) in the form of Eqs (13–15) has
many interesting features, and some of them should be men-
tioned. The first interesting feature seems to be the fact that
Eqs (10–12), relating the individual bottom well displacements
∆r0,n for many (n) particles do not have to depend on the actual
bottom wells positions of r0,n of interconnected particles. As a
special solution, Eqs (10–12) can represent the wave equation
for vibration modes of elastic rod, or the motion of spring with

the equally distributed masses mn per length
l=(N +1)α=(N +1)δx… where α is a distance between subse-
quently connected masses mn–1=mn= =mn+1=mδx… etc.

Except for the variability of shape of irregular block, the
elastic rod seems to be the geometrically nearest object resem-
bling the block structure. If choosing the following substitu-
tion in Eqs (10–12) for the ke=Te/α; ρ dx=mn where ρ is a bar
(spring) density, then Eqs (12–14) take the form of wave equa-
tion for F ext=0.
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The connection of difference equation to the wave equa-
tion opens further possibilities connected to elasticity and
fracture theories.

Appendix B: Solution of difference equation
in form of Eqs (12)

The solution of Eqs (12) can be searched in form:∆r ej x
0 ∝ ( )ωt – k

where k is a wave vector.

k
T

=







ρ ω
e

1

2
(19)

In discrete form for the nth particle we get:
∆r A e A ej j

0,
( ) ( )

n n
t – kx

n
t – kan= =ω ω since x=na.

Substituting these expressions into Eq. (14) provides:
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Substituting from boundary conditions, i.e. that the os-
cillators ‘out of sample’ with index n=0 and index n=N+1 can
be associated with zero amplitudes An=0, we get the conve-
nient substitution:
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